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Omena de Albuquerque Máximo1[0000−0001−5375−1076], Takashi

Yoneyama2[0000−0003−2944−4476], Davi Herculano Vasconcelos Barroso1, and
Rodrigo Tanaka Aki1

1 Autonomous Computational Systems Lab (LAB-SCA), Computer Science Division,
Aeronautics Institute of Technology, 12.228-900, São José dos Campos, SP, Brazil.
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Abstract. This paper proposes a method to calibrate the model used
for inverse perspective mapping of humanoid robots. It aims at provid-
ing a reliable way to determine the robot’s position given the known
objects around it. The position of the objects can be calculated using
coordinate transforms applied to the data from the robot’s vision de-
vice. Those transforms are dependent on the robot’s joint angles (such
as knee, hip) and the length of some components (e.g. torso, thighs,
calves). In practice, because of the sensitivity of the transforms with re-
spect to the inaccuracies of the mechanical data, this calculation may
yield errors that make it inadequate for the purpose of determining the
objects’ positions. The proposed method reduces those errors using an
optimization algorithm that can find offsets that can compensate those
mechanical inaccuracies. Using this method, a kid-sized humanoid robot
was able to determine the position of objects up to 2 meters away from
the itself with an average of 3.4 cm of error.

Keywords: robotics · humanoid robot · inverse perspective mapping ·
computer vision · calibration.

1 Introduction

ITAndroids is a team of students from the Aeronautics Institute of Technology
(ITA) that participates in national and international robotics competitions. One
of the leagues in which ITAndroids participates is Humanoid KidSize, which is a
league of autonomous robots with a human-like body structure and senses that
play soccer against each other [1]. This task involves some complex challenges,
such as building and controlling the robot, as well as programming its decision
making abilities.

⋆ Supported by CNPQ (Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico).
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One of these challenges is the robot’s autonomous localization on the field
with their human-like sensors. This is especially important, as knowing their
position on the field is necessary to take a variety of actions, such as determining
whether they are getting out of bounds of the field or attacking the correct goal
(a field is symmetric, so a robot without its localization cannot discern between
his and the opponent’s goal). In a higher level, the knowledge of their position is
also of paramount importance in planning and adoption of complex attack and
defence tactics.

On the Humanoid League, with exception of some match commands (like
start the match, foul and end the match), the robot is not allowed to receive
information from an external computer. Therefore, the robots need to process
all the information they need to play is a manner analogous to human players,
including finding their own position.

Notice that solving the problem of finding the robot’s position cannot be
done only with the image of their camera (the field they play is, theoretically,
symmetrical). However, given an algorithm that estimates well the position of the
robot relative to some field marks it sees on camera, we can use a Monte Carlo
Localization technique to determine the robot’s pose in the field, as described
in [2] (Here, field marks refer to the intersection of field lines, as can be seen in
Fig. 1).

Fig. 1: Image with annotated field markers. The field marks are the intersections
between field lines. This image was generated thanks to [3].

The algorithm that is used to perform the estimation of the robot position
relative to the field marks it sees on camera is the inverse perspective mapping
algorithm. Section 2 describes how this algorithm is used to obtain the position
of objects in a plane (in our case, the plane is the playing field and the objects
are the field marks) (for futher reading see [4]). Having a good estimation of
the robot’s position relative to some field marks we can use [2] to solve the
localization problem. This is the standard approach used by teams in Robocup
Humanoid KidSize competition.
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However, this process is not easy to do in practice, as there is error involved
in the inverse perspective mapping calculations, which can make the objects’
positions estimation inadequate for the Monte Carlo Localization. Particularly,
the ITAndroids humanoid robot uses the inverse perspective mapping algorithm
to calculate its position relative to objects seen on camera. This process achieves
good results on simulations, yet, does not perform well in real life, as the vector
transformations involved in the calculations are sensitive to minor mechanical
inaccuracies (for instance, a joint with a minor angle offset can output a major
position difference). So, we need a calibration process capable of eliminating
those mechanical errors in the calculations.

This paper contributes by developing a method to calibrate a humanoid robot
inverse perspective mapping algorithm. The ideas here can be applied to other
domains in which a robot performs a inverse perspective mapping to determine
the position of objects relative to itself. The method developed here is based on
guessing offsets on some of the robot’s joints angles until the calculated positions
of known objects are in agreement with their actual positions.

The remaining of this paper is organized as follows. Section 2 explains in-
verse perspective mapping (IPM). Section 3 presents detailed description of the
calibration method and why it is done the way it is, so the reader can adapt
our solution to their needs. Section 4 presents numerical and visual data of the
results of our calibration method in a humanoid kid sized robot. Finally, Section
5 concludes and shares our ideas for future work.

2 Inverse Perspective Mapping

Inverse perspective mapping (IPM) is concerned with determining the 3D world
position of an object seen in an image. In this context, the well-known pinhole
camera model dictates that the perspective projection of a point [x y z]T rep-
resented in the world coordinate system yields an image point [u v]T [9] given
by
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where K and [R t] are the intrinsic and extrinsic matrices, respectively. These
matrices are defined as
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where fx and fy are the focal lengths expressed in pixel units, and (cx, cy)
is the principal point. The parameters rij ,∀i, j ∈ {1, 2, 3} and tk,∀k ∈ {1, 2, 3}
encode the camera’s pose w.r.t. the world coordinate system.
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The intrinsic matrix depends solely on the camera and the lenses, but not
on the camera’s pose, therefore its parameters can be determined once by using
information provided in the camera’s data sheet or by a calibration process
usually provided by most computer vision libraries, such as OpenCV [5]. For a
mobile robot, the extrinsic matrix is always changing with the robot’s motion.
In our case of a humanoid robot, the extrinsic matrix may be computed using
the joint positions and kinematic chain information.

There are many issues that prevent a precise kinematic model, such as man-
ufacturing imprecision, and joint flexibility and backlash. Moreover, due to com-
munication bandwidth limits, we are unable to read all the servo positions within
one walking control cycle, so we need to use expected joint positions for the leg’s
joints.

These errors propagate through the kinematic chain, making the extrinsic
matrix estimate very imprecise. To mitigate these effects, we compute the cam-
era’s translation using only the joint positions, but use the torso’s orientation
estimate together with the positions of the neck joints measured by the servos’
encoders for the camera’s rotation. The torso’s orientation is estimated by an
Extended Kalman Filter (EKF) running on IMU data [6]. Unfortunately, this
is not enough for an adequate estimate, since even small angular errors can be
very harmful to distances estimated by IPM. Furthermore, there is also error in
IMU alignment.

Notice that (1) shows how to project a world point to the image. IPM deals
with the inverse problem, but there are infinite world points which are mapped
to the same image point during perspective mapping. In humanoid robot soccer,
objects seldom leave the ground, so to avoid this ambiguity, a common approach
is to consider that the seen object is on the ground. Therefore, assuming that
the object is at a constant height z = h above the ground, we may write
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which is a system of linear equations with x and y as variables. Then, Equa-
tion (4) may be solved analytically to yield the world position [x y h]T of a given
pixel [u v]T . In our system, we use h = 0 for field features and goalposts (we use
the intersection of the goalpost with the ground as feature) and h = r for the
ball, where r is the radius of the ball.

3 Calibration Methodology

The robot IPM model calibration can be divided in two parts. In the first, it uses
its camera to get images with ArUco [7] markers and saves the position of each
detected ArUco in a file. In the second part, it passes that data to an algorithm
that estimates the offsets in some of the robot’s coordinate transforms.
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3.1 Data Collection

In the first part of the calibration process, the robot collects data from objects in
known positions. To do that, we used ArUco markers placed in known positions.
An ArUco marker is a synthetic square marker composed by a wide black border
and an inner binary matrix which determines its identifier (id). The black border
facilitates its fast detection in the image and the binary codification allows its
identification and the application of error detection and correction techniques
[7]. Examples of such markers can be seen in Fig. 2.

Fig. 2: Example of 7 distinct ArUco markers [7].

The operation principle of an ArUco marker is similar to that of a QR-Code.
The choice for ArUco instead of the most familiar QR-Code is based on its ease
of detection [7], allowing the robot to see them further away, yielding better
results.

For the calibration with ArUco markers in known positions, we developed a
carpet (see Fig. 3) with 120 markers in known positions. This carpet has different
size markers, according to the robot’s distance detection capability. Its size (3 m
by 1.5 m) allows for a good area of calibration without making it difficult to be
transported, stored or set up. This approach was inspired by the solutions other
teams have developed, such as Rhoban [13] and MRL [14].

During calibration, the robot is placed in the bottom center of the carpet,
with its feet’s center aligned with the carpet side, as Fig. 4. Then, the robot
obtains images of the carpet with its neck in different angles, in such a way
to map the carpet entirely. Those images are processed by an ArUco detection
algorithm. Every time the robot detects some ArUco, the information necessary
to perform the IPM is saved, together with the position of every detection on
the image and the real positions of the ArUcos. This information is saved in a
file which is later read by the calibration algorithm.

3.2 Calibration algorithm

Comparing the calculated positions of each ArUco markers and their actual
positions we notice substantial errors (see Fig. 5). That happens due to the
robot’s mechanical inaccuracies. To fix those inaccuracies we set offsets for the
angles of some of the robot’s coordinate transforms. We choose the angles that
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Fig. 3: Carpet with ArUcos that is used during a calibration. The real carpet is
3 m by 1.5 m.

Fig. 4: Robot collecting data for calibration.

affect the calculation of the ArUco’s positions, and they are: the three rotational
degrees of freedom of the neck and the roll and pitch of the torso. The yaw of
the torso was not taken into account, as the way the legs are built does not allow
significant displacement in that direction. Also, length offsets were ignored. The
calibration considering length offsets in the torso, legs and neck was also done,
with small optimization difference. This calibration happens just before a match
and must be performed as fast as possible. Adding length offsets doesn’t increase
the cost of computing (5), but takes longer for the optimizer to converge due to
additional dimensions. Thus we conclude that adding those offsets is not worth
the longer runtime.

The purpose of the calibration is to find the offsets that make the calculated
positions of the ArUcos as close as possible to their actual positions. Considering
that those offsets make the calculated positions sufficiently close to the real
positions, we can assure that any object within a carpet of distance to the robot
(up to 1.5 m in front and 1.5 m to the side) will have its distance calculated
precisely, as it is equivalent to the robot detecting an ArUco marker in the same
position.
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Notice that, even though an area of 3 m by 1.5 m seems tiny, in comparison to a
person, the Humanoid Kidsize League has robots between 40 cm and 90 cm and
a field with length 9 m by 6 m of width, according to the RoboCup rules [8].
Thus, given a successful calibration, we can assure precise distance calculation
in, at least, an area that corresponds to (3 · 1.5)/(9 · 6) = 8.33% of the area
of the entire field. The calibration also generalizes well for positions out of this
area because of how the IPM algorithm works. So, in practice, we have precise
distance estimation for objects even out of the training area (here training area
refers to the carpet area).

To find the best offsets to calculate the position of an object, we need an ex-
pression to evaluate the quality of each set of offsets. Let x be a vector containing
the chosen offsets, D all the data collected in the first part of the calibration,
we need a function J(x,D) that outputs the cost related to the vector x given
the collected data D. In this problem, a vector x1 is said to be better than other
vector x2 if J(x1,D) < J(x2,D). We have a problem of optimization of the cost
function J . Let us construct J in the following way: for every ArUco detection
i ∈ D we infer its position (using the IPM algorithm) and then get an error
εi = p̂i − pi. Then J is the sum of the square of the modulus of the errors:

J(x,D) =
∑
i∈D

∥εi∥2 =
∑
i∈D

∥p̂i − pi∥2 , (5)

where pi is the ground truth position of the i-th detected ArUco in D and p̂i
is the calculated position of the i-th detected ArUco in D. Remember D is all
the collected data. In the example used in this paper, D is a text file with all
the detected ArUcos’ positions in their images, their real 3D positions and the
robot joints’ positions which are necessary to perform the IPM algorithm. pi and
p̂i are 3 dimensional vectors, but in our case all ArUcos are in the same plane
(they are on the ground, so z = 0), so pi and p̂i are reduced to two dimensional
vectors.

Calculating p̂i is done using the information of the joints’ angles saved in D,
the position of the detection in the image and the IPM algorithm, as described
in section 2.

Knowing how to calculate p̂i from the collected data and the offsets x, and the
actual position of each ArUco pi, the cost function J(x,D) is defined. However,
in practice, those definitions are not enough to optimize x, due to errors that
occur during the data collecting part of the calibration. So, we need, firstly, to
remove outliers from the data.

Removing outliers from data Plotting p̂i for each detected ArUco i ∈ d
from some benchmark collected data (this data was collected during one of the
calibration tests and is used throughout this entire paper) we obtain Figure 5.
In Figure 5 (a), blue dots have alpha = 0.2 (image opacity level). Hence, dark
points are actually more than one detection in the same region. Decreasing the
value of alpha to 0.01 it is still possible to note some dark regions, as Figure 5
(b) shows.
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(a) alpha = 0.2 for blue dots

(b) alpha = 0.01 for blue dots

Fig. 5: ArUcos’ calculated positions before calibration. Blue dots are the calcu-
lated positions while black dots are the actual positions.

The difference between Fig. 5 (a) and (b) suggests that all the light blue
dots found on Fig. 5 (a) are false positives. Those false positives are detrimental
to the calibration, since some of them were detected really far away, creating a
harmful bias in the optimization of x.

To remove the outliers in D, we need to adopt a point selection criteria. The
criteria we chose is described in the following steps:

– For each ArUco on the carpet, a list containing all the detections of this
ArUco is made.

– For each list, we calculate the mean position and the standard deviation.
– We delete all the points in each list that are above 2 standard deviations from

the mean. This value was chosen knowing that, for a gaussian distribution,
approximately 95% of the data correctly detected will not be deleted. This
allows us to exclude false positives without compromising the data.

The results of such selection can be seen in Figures 6 and 7. Red points are
points that were excluded in the process. Blue points are the calculated points
that were not excluded. The brown dot is the mean of the calculated positions
(blue and red points) and the black point is the actual ArUco position.
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Fig. 6: Outlier removal example for an ArUco with 1 false positive.

Fig. 7: Outlier removal example for an ArUco without false positives.

Even though this process may lose some true positives, such as Fig. 7, it is
efficient to remove outliers, as shown in Fig. 6. The remaining data after this
process is plotted in Fig. 8.

In fact, analysing Fig. 8 we can already associate each black dot with a cluster
of blue points. This indicates that the outlier removal process worked correctly.

Optimizing offsets With the outliers removed from D, we may optimize x
through J(x,D). Now, we need to choose an algorithm that estimates better
offsets until we find the minimum of J(x,D). This is a non-linear optimization
problem. It is also hard to do some kind of gradient descent to solve this problem.
Because of that, during the development of this calibration method, we used the
following two optimization algorithms: Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [11] and Nelder-Mead [12]. Both algorithms choose a start-
ing value for x and, through a cost function (in this case J), they get a better x
in the next iteration. The algorithms return a vector x when they reach a stop
criterion, usually when J(x,D) can not be reduced anymore by the algorithm.

It is important to highlight that neither of these algorithms guarantee con-
vergence of J(x,D) to its global minimum. Indeed, both algorithms can return
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Fig. 8: Calculated positions after outlier removal (alpha = 0.1 for blue points).

a value of x found on a local minimum. For the purpose of this calibration, it is
heuristically assumed that the values returned by these algorithms will, at least,
suffice for our goals of calculating positions precisely, even if they are not the
global minimum.

Due to time restrictions in the first tests, which were done using MATLAB,
the Nelder-Mead algorithm was chosen instead of the CMA-ES algorithm. This
algorithm is used as default in the final code of the ITAndroids team.

To suit our time constraints, the Nelder-Mead algorithm was rewritten in
C++. Using the compilation flags “-Ofast -fext-numeric-literals -fPIC” for the
g++ compiler, it was possible to achieve an execution time under 3 s on average.
The results of the calibration using the Nelder-Mead algorithm (implemented in
C++) are shown in Fig. 9.

4 Results and Discussions

Comparing Figs. 8 and 9, we notice that the offsets found by the algorithm
improved the robot’s position calculation, as the blue clusters are now much
closer to their respective black points. In fact, the cost before optimizing x was
J(0,D) = 3,782.52. After optimizing, J(x,D) = 65.69. That is a 98.3% cost
reduction. Furthermore, the average cost of each detected ArUco was 0.00118
after the calibration. As all the positions are calculated in meters and the error is
the squared distance, the quadratic mean of the distance between the calculated
position of an Aruco and its actual position is

√
0.00118 m2 = 0.034 m = 3.4 cm.

So the average distance between an ArUco and its calculated position is less than
3.4 cm (remember that the arithmetic mean is less than or equal to the quadratic
mean).

Finally, we need to check whether the solution found by the algorithm suits
the problem conditions (even though the calibration results were good, if the
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Fig. 9: Calculated positions after calibration (alpha = 0.1).

solution x has a big offset, say, a 38◦ offset, the solution should be disregarded, as
this kind of error is beyond an usual mechanical error). In the example presented
during this paper, the bigger offset found was the torso roll, with 7◦, followed
by the camera yaw with 1.4◦. These values match the problem intuition of small
offsets. Also, the solution must be obtained in a short time, as the robots are
calibrated just before going into a match, so an algorithm that takes a long time
to execute is impractical. As said in Section 3.2, it was possible to achieve an
execution time, on average, under 3 s. This is enough for our purposes.

5 Conclusion

This paper presents a method for the calibration of the inverse perspective map-
ping model of a humanoid robot. The use of this calibration allows the IPM
algorithm to precisely determine the robot distance to known objects in the
field. This information can then be used with a Monte Carlo Localization tech-
nique, such as the one describred in [2], to allow the robot to locate itself on the
field.

In the example presented in this paper, the calibration reduced the costs
of approximately 60 thousand object detections by 98.3%, making the average
distance between estimated and real positions inferior to 3.4 cm. All those objects
were placed in an area of 3 m by 1.5 m, which is around 8.3% of the field area
of a RoboCup match.

For future research, we suggest:

– Use more complex models for the calibration (instead of the joint’s angles).
– Use a deep neural network to optimize the offsets.
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– Use the own field features to calibrate.
– Generalize this method so it can be applicable to other scenarios other than

the humanoid league.
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