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Resumo 

 

 

As exigências tecnológicas do setor aeroespacial tornam-no uma das indústrias mais 

dispendiosas do mundo. Portanto, é de extrema importância otimizar todos os aspectos de uma 

missão aeroespacial, desde o projeto do hardware da espaçonave até a trajetória da missão. A 

otimização da trajetória geralmente requer a definição de um número finito de parâmetros. Para 

alguns casos, como o problema de dois corpos, é possível obter uma solução em forma fechada 

para as trajetórias da espaçonave. A otimização dos parâmetros, então, é uma questão de 

resolver algumas equações em forma fechada. No entanto, em outros casos, é necessário um 

otimizador para encontrar os parâmetros ideais de um voo espacial. Este trabalho analisa 

otimizadores comumente usados na literatura para resolver problemas relacionados a trajetórias 

aeroespaciais. Em seguida, aplica esses otimizadores a problemas teste e avalia o desempenho 

de cada um deles, comparando a solução e o número de iterações. O objetivo deste trabalho é 

estabelecer um padrão de quais são os melhores otimizadores para resolver problemas de 

trajetória na área aeroespacial e os trade-offs entre cada um deles. Descobrimos que, 

considerados os algoritmos investigados e as implementações disponibilizadas nas bibliotecas 

pesquisadas, DE, NSGA-II  e GA são os melhores otimizadores para problemas de objetivo 

único, enquanto NSGA-II  e MHACO são os melhores otimizadores para problemas de 

múltiplos objetivos. 
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Abstract 

 

 

The technological demands of the aerospace field make it one of the costliest industries in the 

world. It is then of uttermost importance to optimize every aspect of an aerospace mission, from 

spaceship hardware design to the mission trajectory. Optimizing the trajectory usually requires 

setting a finite number of parameters. For some cases, such as the 2-body problem, we can get 

a closed form solution for the spaceship trajectories. Optimizing the parameters is then a matter 

of solving some closed-form equations. In other cases, however, an optimizer is needed to find 

the optimal parameters of a space flight. This work analyses commonly used optimizers in 

literature for solving problems related to aerospace trajectories. It then applies those optimizers 

to some test problems and reviews the performance of each one of them by comparing the 

solution found and the number of evaluations to get such solution. The aim of this work is to 

set a standard of what are the best optimizers to solve trajectory problems in the aerospace field 

and the trade-offs between each of them. We found that, considering the investigated algorithms 

and the implementations available in the researched libraries, DE, NSGA-II, and GA are the 

best optimizers for single-objective problems, while NSGA-II and MHACO are the best 

optimizers for multi-objective problems. 
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1 Introduction 

 

 

The aerospace industry is renowned for its remarkable achievements and groundbreaking 

innovations that have revolutionized human technology. Thanks to this field, we have GPS  

(Global Positioning System) service [1], which provides us with accurate global positioning 

and navigation capabilities; we have private companies, such as SpaceX, providing low latency 

internet access anywhere in the world using LEO (Low Earth Orbit) satellites [2]; we have the 

FireSat system [3], which aims to increase safety by allowing fire fighters to detect long-range 

forest fires earlier, reducing damage to properties and nature. All those advancements make it 

clear that the aerospace field is of great strategic relevance to governments and modern society. 

Yet, the entire space economy is only valued at 469 billion USD [4]. By comparison, Apple’s 

market value reached 3 trillion USD on July 3, 2023 [5]. The main cause of the relatively low 

valuation of the space economy is the high cost of aerospace technology projects. For instance, 

the whole Apollo program spent roughly 25.8 billion USD, or approximately 257 billion USD 

when adjusted for inflation to 2020 dollars [6]. Because of those high costs, optimizing every 

possible variable in a space mission is of uttermost importance. 

One of the variables we want to optimize in a space mission is the orbit, or flight trajectory, 

of the spacecraft. The orbit selection process is highly complex, involving many parameters [7]. 

In some cases, such as the two-body problem where only one gravitational body influences the 

spacecraft's motion, closed-form solutions for the spacecraft orbit exist, simplifying the 

optimization process. However, for more complex scenarios involving multiple gravitational 

bodies or other factors, such as the oblateness of the orbited celestial body, there is no closed 

form solution for the orbit. In those cases, it is not clear what orbit a given choice of parameters 

outputs. Therefore, a tool to calculate the trajectory and a method to evaluate its “quality” 

(according to the mission requirements) is needed. Notice it becomes much more difficult to 

find the optimal parameters for the mission in that case: as the influence of each parameter 

becomes unclear in the orbit format, we could need to simulate all possible combinations of 

parameters to find the one that minimizes the mission cost, which may be unfeasible. For 

example, Lima dos Santos [8] needed 4 parameters to optimize a two-stage solar sail trajectory. 

One of those parameters was an angular position 𝛼 that could assume values from -90° to +90°. 

If we set a step of 5°, that means 37 possible values of 𝛼. Assuming a similar number of values 

for the other variables, we have more than a million possible states to evaluate. This means 
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running a costly simulation a million times. If each simulation took 10 seconds to finish using 

the available propagator, the optimizer would take almost 4 months to converge if running non-

stop. This makes it clear we have a necessity to use efficient optimizers for this problem (and 

other multidimensional optimization problems in the aerospace field). 

This work reviews commonly used optimizers in literature for space trajectory problems. 

It analyses how those optimizers work and compares them through some test problems. The 

comparison considers the solution found and the number of evaluations of an objective function. 

The aim of this work is to set a standard for the best optimizers to solve trajectory problems in 

the aerospace field and the trade-offs between each of them. 

The remainder of this paper is organized as follows: Section 2 reviews commonly used 

optimizers in the literature. Section 3 reviews the theory behind optimizers and shows how the 

optimizers found in the previous section work. Section 4 presents the test problems. Section 5 

presents the methodology used to run the test problems. Section 6 tests the optimizers against 

the test problems and compares their solutions and the number of evaluations of the objective 

function. Finally, Section 7 concludes and shares our ideas for future work. 
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2 Literature Review 

 

 

We did a literature review of all the papers that compared different optimizers on space 

trajectory problems. The objective of this review was to search for similar work done before 

and gather their results and insights. This review was done over the following databases: IEEE 

Xplore [9], Google Scholar [10], and Springer Link [11]. We believe those databases suffice 

when searching for relevant work on this subject. The time interval we considered in this review 

was between January 2012 and August 2023 inclusive. We did not directly search for works 

before 2012, as they may be outdated, either by not considering new state of the art optimizers 

(the ones published after 2011) or by not taking better implementations of existing optimizers 

into account (for example, better parallel computing using more recent CUDA technology [12]), 

which may lead to an unfair comparison for some methods. 

To perform this review on IEEE Xplore, we performed the following query: 

Search Terms: (aerospace in "All Metadata") AND (optimization in "All Metadata") 

AND (optimizers in "All Metadata") OR (orbital in "All Metadata") AND (trajectory in "All 

Metadata"). 

Filters: 2012-2024. 

We got 499 results. Of those, the following 8 works met our criteria, by either comparing 

different optimizers or citing works that do so. We did not include works that simply presented 

a new optimizer and showed its convergence / acceptable solution. 

1. Acciarini [13] cited works by the ESA (European Space Agency) affirming that 

MPSO (Modified Particle Swarm Optimization), DE (Differential Evolution) and 

ASA (adaptative simulated annealing) are the most promising trajectory 

optimizers [14] and [15]. They also presented their own optimizer MHACO 

(Multi-Objective Hypervolume-Based Ant Colony Optimizer) and compared it 

to MOEA/D [16] and NSGA-II (Nondominated Sorted Genetic Algorithm-II) 

[17] optimizers. They concluded their optimizer converges better than the other 

two for their test problems. 

2. Wang [18] affirmed their optimizer IICA (Improved Imperialist Competitive 

Algorithm) performs better than other common algorithms, such as PSA, DE and 

GAs (Genetic Algorithms) for solar sail spacecraft trajectory optimization. 
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3. Shirazi [19] compared EDAs (Estimation of Distribution Algorithms) to GAs and 

PSO in low-thrust trajectories corrections. They affirmed EDAs are more reliable 

than GAs and PSO for the problems they analyzed. 

4. Samsam [20] affirms GAs are the most suitable to handle multi-objective 

optimization problems with constraints for optimal trajectories for spacecrafts 

(particularly when compared to PSO and SA). 

5. Navabi [21] compares a different set of algorithms than the ones found in the 

works cited above. They compare SD (Steepest Descent), VE (Variation of 

Extremals), QL (Quasilinearization) and CL (Collocation) methods to solve low-

thrust trajectory optimization problems. They concluded CL has the least error 

and is a more practical method than the others for the problem they tested. 

6. Chai [22] presents a method called VLDE (Violation Learning Differential 

Evolution algorithm) and states that this method is superior to PSO, DE, GA and 

ABC (Artificial Bee Colony) methods for trajectory optimizations. 

7. In another work, Shirazi [23] employed an ICA (Imperialist Competitive 

Algorithm) for solving a multi-objective high thrust acceleration and compared 

it to a GA. They found the ICA converged faster than the GA. 

8. Shirazi [24] also analyzed a hybrid genetic simulated annealing strategy in high 

thrust orbital maneuvers optimization. They used GA and SA as basis for 

comparison and found that their hybrid approach converges faster. 

        To perform this review on Google Scholar, we performed the following query: 

        With all the words: trajectory optimization spacecraft. 

        Where my words occur: in the title of the article. 

        Date: 2012 – 2024 

        We got 116 results. Of these, we found and were able to review 3 new papers: 

9. Shirazi [25] refers to GA, PSO and DE as the most used optimizers in aerospace 

trajectory problems. They also highlight that GAs are the first choice for most of 

the spacecraft trajectory optimization problems, perhaps due to their availability 

and ease of use. 

10. In another work, Chai [26] reviews optimization techniques used in spacecraft 

flight trajectory design. They enumerate popular optimization algorithms, 

including GA, DE, VLDE, PSO, AC, ABC and SA for single-objective 

optimization, and NSGA-II, MOPSO (Multi Objective Particle Swarm 



19 

 

 

Optimization) and MOEA/D for multi-objective optimization. This work does 

not compare optimizers using test problems. 

11. Chai [27] also motivates the use of NSGA-II in multi-objective optimization 

problems in comparison to other derivative-free optimization algorithms such as 

GA, ABC and PSO. 

        Some other works found on Google Scholar presented a comparison of different methods 

to solve aerospace trajectories, but we were not able to access them due to restrictions. 

        Finally, we performed the following query on Springer Link: 

        With all the words: optimization 

        Date: 2012-2024 

        We found 21 results, none of which refer to optimization of aerospace trajectories. 

        So, after performing our literature review, we found 11 works that cover the same subject 

of this work: review and find efficient optimizers for aerospace trajectory problems. Analyzed 

those works, we concluded the following: 

• We can separate space trajectory problems into two kinds: single-objective and 

multi-objective problems. Single-objective problems have a single cost function 

which must be minimized. Multi-objective problems have multiple cost functions. 

Because there may not be such a solution that minimizes all of them at once, we 

search for pareto-optimal solutions (we will discuss that in detail on the next 

section). 

• PSO, DE, GA, SA, and ABC are common algorithms that have been studied and 

used for some time in single-objective aerospace trajectory optimization problems 

[15]. Because they are easy to implement and are reliable, they are usually used as 

benchmark for newer state-of-the-art algorithms. Those optimizers are safe options 

for single-objective problems. 

• For multi-objective problems the most used algorithms are NSGA-II, MOEA/D 

and MOPSO (Multi-Objective Particle Swarm Optimization). 

        That said, in hope to find efficient algorithms for space trajectory problems, we decided to 

include the following algorithms in our tests and comparisons: 
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Table 1 Chosen optimizers. 

Optimizer Name Problem Type 

PSO Single-Objective 

DE Single-Objective 

GA Single-Objective 

SA Single-Objective 

ABC Single-Objective 

MOPSO Multi-Objective 

NSGA-II Single-Objective and Multi-Objective 

MOEA/D Multi-Objective 

MHACO Multi-Objective 

 

        Other algorithms presented in the papers above were not included due to difficulty in using 

available source code. We refrained from implementing the optimizers ourselves to not 

introduce errors and thus biases in the analysis. Also, we believe the chosen list is enough for 

finding efficient algorithms to solve trajectory problems, both for single-objective and multi-

objective problems, due to the amount of research that has been put into those optimizers. 
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3 Optimizers Theoretical Background 

 

 

Optimizers are used to minimize (or maximize) objective functions. Often, a single 

objective function is not enough to describe a problem: say you want to minimize the cost of a 

space mission, but the found solution implies the mission will last much longer than desired. In 

that case, you can better describe the problem by using two objectives: the cost and the duration 

of the mission. Because the theory behind single-objective minimization and multi-objective 

minimization has a lot of differences, we will study them separately. 

 

 

3.1 Single-Objective Minimization 

 

Single-objective minimization can be summarized as follows: Find the points that provide 

the minimum function value of 𝑓 over the constraint set Ω: argmin
𝑥

{𝑓(𝑥) ∶ 𝑥 ∈ Ω}. Note that 

this set can be empty. For example, let 𝑓(𝑥) = 𝑥 and Ω =  ℝ. No input 𝑥 ∈ ℝ minimizes 𝑓(𝑥), 

as 𝑓(𝑥 − 1) < 𝑓(𝑥). This happens because Ω is unbounded and 𝑓(𝑥) does not have a lower 

bound. In the context of space mission parameters (that is, choosing a tuple of parameters 𝑥 to 

define some aspect of a space mission), Ω will usually be bounded. Also, having lim
𝑥→𝑥0

𝑓(𝑥) =

−∞ does not make sense for objective functions that have a physical meaning (such as cost or 

time elapsed). So, we may assume that we will always have a non-empty set as solution. 

Describing the exact form of Ω ⊆ ℝ𝑛 to a solver may be hard. For example, what if Ω is 

the upper surface of a unit sphere (see Figure 1)? How are we supposed to tell the solver this 

information? This problem becomes particularly worse as the geometry of Ω becomes less 

usual. To solve this problem, we define equality and inequality constraints: we define a list of 

equality constraints 𝑔𝑖(𝑥) = 0 and a list of inequality constraints ℎ𝑖(𝑥) ≥ 0. 
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Figure 1 Upper surface of a unit sphere. 

 

        For example, if we desire to minimize a function 𝑓(𝑥):Ω → ℝ, 𝑥 = (𝑎, 𝑏, 𝑐), where Ω is 

the upper surface of a unit sphere, as shown in Figure 1, we can set the lower bound of x to 

[−1,−1, 0], the upper bound to [1, 1, 1] and an equality constraint 𝑔(𝑥) = 𝑎2 + 𝑏2 + 𝑐2 − 1 =

0. This gives the optimizer the necessary information to search over Ω. Also, the fact that 𝑔(𝑥) 

is smooth helps the optimizer converge to the domain whenever it evaluates points outside of 

it. By using lower and upper bounds, along with equality and inequality constraints, we can tell 

the optimizer the domain Ω over which we want to search for an optimal value. Now we must 

define a strategy to do it. 

 

3.1.1 Complete Search / Grid Search 

 

The most straightforward strategy to minimize an objective function is to evaluate all 

possible values in the domain and return the input that outputs the minimum value found. 

Considering the input is defined over a continuous domain, this is impossible. What is done 

instead is segmenting the domain into finite steps and evaluating the objective function at each 

step. For example, if the input is a ℝ6 vector with lower bound [0,0,0,0,0,0] and upper bound 

[1,1,1,1,1,1], we can break each dimension into steps of size 0.01, so we have 101 values to 

evaluate in each dimension (0, 0.01, 0.02,… ,1). This accounts for a total of 1016 ≈ 1012 

evaluations. If each evaluation takes 10,000 CPU cycles (for comparison just calling a C/C++ 

function takes 25-250 CPU cycles depending on the number of parameters of the function [28]. 

Objective functions for space missions tend to perform costly computations to simulate the 

environment, so 10,000 CPU cycles is a much conservative value), we have a total of 1016 CPU 

cycles. Modern CPUs’ speed is around 4 GHz. This means it would take an entire month to 
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optimize this lightweight objective function with 6 parameters. If the objective function does a 

lot of computations, such as running a Runge-Kutta method, it may take years to run this 

optimization. This problem gets worse as we increase the dimension of the problem and reduce 

the size of each step. That is why doing a complete search is strongly advised against, unless 

we have only one or two parameters to optimize, or we have a bit more parameters and the 

objective function runs fast. To illustrate this method, consider Figure 2. 

 

Figure 2 Complete Search over a function. 

 

The evaluated function of the Figure 2 takes two parameters 𝑎 ∈ [−5, 5] and 𝑏 ∈ [−5,5] 

and returns the value 𝑓(𝑎, 𝑏) = 𝑎2 + 𝑏2. We segmented each parameter into steps of size 0.4. 

Each black dot in the figure is a point where the function was evaluated. The star marks the 

point that outputs the minimum value found by the search. Doing that, the solution we found is 

𝑥 = (−0.2, −0.2), which outputs 𝑓(𝑥) = 0.08. Notice the actual minimum of the function is 

at 𝑓(0,0) = 0. By taking a bigger step we reduce the number of evaluations, but our solution 

may get further from the global minimum. 

Our advice for this optimization technique is: if the problem has only a single parameter, 

a complete search is probably the best option. If the problem has two parameters, a complete 

search is still useful, specially to make plots like the one in Figure 2, where the user can easily 
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visualize the value of the objective function at different points. If the problem has three or more 

dimensions, we strongly advise against this method. 

 

3.1.2 Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is a heuristic optimization technique inspired by the 

social behavior of birds flocking or fish schooling. It was introduced by Kennedy and Eberhart 

in 1995 [29]. The algorithm can be described by the following sequence of steps: 

1. Initialization: The algorithm starts with a group of random solutions called 

particles. Each particle represents a potential solution to the optimization 

problem. Each particle has a position, which represents the current solution, and 

a velocity, which determines how much the particle will move in the next 

iteration. 

2. Evaluation: Each particle's position is evaluated using the objective function to 

determine its fitness. 

3. Update Best: For each particle, if the current position is better (i.e., has a better 

fitness) than its previous best-known position, then this position becomes the 

new personal best for that particle. 

4. Update Global Best: From all the personal best positions of the particles, the 

one with the best fitness is chosen as the global best position. 

5. Update Velocities and Position: For each particle, its velocity and position are 

updated based on three components: 

a. Inertia: This component represents the particle's previous velocity. It 

ensures that the particle doesn't change its direction abruptly. 

b. Cognitive Component: This is the knowledge that the particle has from 

its own experience. It is the difference between the particle's personal 

best position and its current position. 

c. Social Component: This is the knowledge that the particle gains from its 

neighbors. It is the difference between the global best position and the 

particle's current position. 

The updated velocity is a weighted sum of these three components. The weights 

(often called coefficients) are parameters of the PSO algorithm and can be 

adjusted to change the behavior of the particles. The position of the particle is 

then updated by adding the new velocity to its current position. 
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6. Termination: The algorithm repeats steps 2-5 until a stopping criterion is met. 

Figure 3 illustrates how the algorithm works. 

 

 

Figure 3 Illustration of PSO algorithm. Image taken from Wikipedia [30]. 

 

 The algorithm starts on the top left image of Figure 3. The velocity of each point is 

illustrated by an arrow. As the iterations progress, the algorithm eventually converges to the 

global minimum. 

 Notice this is a heuristic approach. The balance between exploration (searching new 

areas of the search space) and exploitation (refining the search around the best-found solutions) 

is achieved through the inertia, cognitive, and social components of the algorithm. High inertia 

can lead to more exploration, while high cognitive and social components can lead to more 

exploitation. We will see how this algorithm performs in aerospace mission trajectory 

optimization in the results section. 

 The implementation of PSO we used in this paper was provided by the Python library 

pymoo [31] version 0.6.0. 
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3.1.3 Differential Evolution (DE) 

 

Differential Evolution (DE) is a population-based optimization algorithm that belongs 

to the family of evolutionary algorithms. It was introduced by Storn and Price in 1997 [32]. The 

algorithm can be described by the following sequence of steps: 

1. Initialization: The algorithm starts with a randomly generated population of 

potential solutions, called individuals or agents. Each individual represents a 

potential solution to the optimization problem. 

2. Mutation: For each individual 𝑥, a trial vector is generated using the following 

steps: 

a. Randomly select three individuals from the population. They should be 

distinct from each other as well as from 𝑥. Let’s call them 𝑎, 𝑏, 𝑐. 

b. Build the mutant vector 𝑣 = 𝑎 + 𝐹 ⋅ (𝑏 − 𝑐), where 𝐹 is a scaling 

parameter. 

c. Build a trial vector 𝑢 the following way: for each component 𝑖, 𝑢𝑖 = 𝑣𝑖 

with 𝐶𝑅 probability and 𝑢𝑖 = 𝑥𝑖 with 1 − 𝐶𝑅 probability, where 𝐶𝑅 is 

the crossover parameter.  

3. Selection: If 𝑓(𝑢) < 𝑓(𝑥), we update 𝑥 to 𝑢. Otherwise, we discard the update. 

4. Termination: The algorithm repeats steps 2-3 until a stopping criterion is met. 

It is hard to illustrate this algorithm intuitively, so we won’t provide a figure for it. This 

algorithm is also based on heuristic approaches. The mutation operation, which uses differences 

between randomly selected individuals ensures diversity in the population. This helps the 

algorithm explore the search space effectively. 

The implementation of DE we used in this paper was provided by the Python library 

pymoo [31] version 0.6.0. 

 

3.1.4 Genetic Algorithm (GA) 

 

Genetic Algorithms are a subset of evolutionary algorithms inspired by the process of 

natural selection. The exact algorithm we will use in our analysis is a basic (𝜇 + 𝜆) genetic 

algorithm [31]. The algorithm can be described by the following steps: 

1. Initialization: A starting population is sampled in the beginning. 
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2. Evaluation: Each individual is evaluated using the objective function. 

3. Survival: It is often the core of the genetic algorithm used. For a simple single-

objective genetic algorithm, the individuals can be sorted by their fitness, and 

survival of the fittest can be applied. 

4. Selection: At the beginning of the recombination process, individuals need to 

be selected to participate in mating. Depending on the crossover, a different 

number of parents need to be selected. Different kinds of selections can increase 

the convergence of the algorithm. 

5. Crossover: When the parents are selected, the actual mating is done. A 

crossover operator combines parents into one or several offspring. Commonly, 

problem information, such as the variable bounds, is needed to perform the 

mating. For more customized problems, even more information might be 

necessary (e.g. current generation, diversity measure of the population, …). 

6. Mutation: It is performed after the offspring are created through the crossover. 

Usually, the mutation is executed with a predefined probability. This operator 

helps to increase the diversity in the population. 

7. Termination: The algorithm repeats steps 2-6 until a stopping criterion is met. 

Notice this algorithm is similar to Differential Evolution, as we also have the selection, 

crossover and mutation steps. This algorithm is illustrated by Figure 4. 

 

 

Figure 4 Humanoids learned to walk via Genetic Algorithm. Image generated from [33]. 

In Figure 4, the yellowish humanoids are the fittest ones in each generation. It is 

noticeable that as the generations pass, the probability that a single humanoid walks upright 

increases. This happens because each generation is formed by a combination of the best agents 
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in the previous generation (together with some mutation). This simulation is available at 

https://rednuht.org/genetic_walkers/ [33]. 

As previously cited, the GA implementation we used in this paper was provided by the 

Python library pymoo [31]. 

 

3.1.5 Simulated Annealing (SA) 

 

Simulated Annealing (SA) is a probabilistic optimization algorithm inspired by the 

annealing process in metallurgy. It was introduced by Scott Kirkpatrick in 1983 [34]. Annealing 

refers to the process where a material (like metal or glass) is heated to a high temperature and 

then gradually cooled to remove defects and improve the arrangement of its atoms. Similarly, 

SA is used to find an approximate solution to an optimization problem by iteratively exploring 

the solution space. The algorithm can be described by the following steps: 

1. Initialization: Start with an arbitrary solution to the problem. 

2. Iteration: Explore a random neighbor to the current solution. If the neighbor is 

fitter, accept it as the new solution. If not, accept it with 𝑒−Δ𝐸/𝑇 probability, 

where Δ𝐸 = 𝑓(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) − 𝑓(𝑐𝑢𝑟𝑟) and 𝑇 is the current “temperature” of the 

algorithm. 

3. Cooling: Decay the value of temperature 𝑇. 

4. Termination: Repeat steps 2-3 until a stop criterion is met. 

The key feature of SA is its ability to escape local optima by accepting worse solutions 

with a certain probability. This probability is high at the start, when the temperature is high, 

and decreases as the algorithm progresses. The balance between exploration and exploitation is 

achieved by the cooling process: in the beginning, the algorithm explores the solution space 

widely, accepting many non-optimal moves. As 𝑇 decreases, the algorithm becomes more 

conservative, refining the current best solution and exploiting the best regions of the solution 

space. Figure 5 illustrates this algorithm. 

https://rednuht.org/genetic_walkers/
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Figure 5 Simulated annealing algorithm minimizing a function. 

 

The simulated annealing implementation we used in this paper was provided by the 

Python library pygmo [35] version 2.19.5. 

 

3.1.6 Artificial Bee Colony (ABC) 

 

Artificial Bee Colony (ABC) is an optimization algorithm based on the intelligent 

foraging behavior of honeybee swarms. It was introduced by Karaboğa in 2010 [36]. The 

algorithm simulates the foraging behavior of bees to find the optimal solution. Here is a 

description of the steps involved in the ABC algorithm: 

1. Initialization: The algorithm initializes a population of solutions where each 

solution is referred to as a "food source." Each food source corresponds to a 

possible solution to the optimization problem. 

2. Employed Bees Phase: Employed bees are associated with specific food 

sources, and their task is to exploit their food source. They carry out a local 

search near their food source and evaluate the fitness of the new solution. If the 

new solution has better fitness, the bee memorizes the new position and forgets 

the old one. 

3. Onlooker Bees Phase: Onlooker bees watch the employed bees and choose a 

food source depending on the probability related to the fitness of the food source. 

They may also perform a local search around the selected food source to possibly 

find a better solution. 

4. Scout Bees Phase: If a food source is not improved further through a 

predetermined number of cycles, it is abandoned, and the bee becomes a scout. 
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Scout bees are responsible for exploring new areas of the search space. They 

randomly generate new solutions without the influence of previous experience. 

5. Memorizing the Best Solution: Throughout the foraging process, the best food 

source found so far is memorized. 

6. Termination: The algorithm repeats the employed bee’s phase, the onlooker 

bees’ phase, and the scout bees’ phase until a stopping criterion is met, such as 

a maximum number of iterations or reaching a satisfactory fitness level. 

The ABC algorithm is a heuristic approach that combines local search methods, 

conducted by employed and onlooker bees, with global search methods, conducted by scout 

bees. This balance allows the algorithm to explore new areas of the search space while 

exploiting the best solutions found. 

The ABC implementation we used in this paper was provided by the Python library 

pygmo [35] version 2.19.5. 

 

3.2 Multi-Objective Minimization 

 

When optimizing more than one objective function, there may not be such a solution that 

globally minimizes all the functions at the same time. In real world scenarios, it is expected for 

objective functions to conflict with each other. For example, minimizing the money spent on a 

mission usually competes with shortening the schedule. Because of that, when working with 

multiple objective functions, we are concerned with pareto optimal solutions; that is, solutions 

that cannot be improved in any of the objectives without degrading at least one of the other 

objectives. In other terms, 𝑥 ∈ Ω is pareto optimal if and only if there is no other solution 𝑦 ∈

Ω such that 𝑓𝑖(𝑦) ≤ 𝑓𝑖(𝑥) ∀ 𝑖 (that is, 𝑦 is no worse than 𝑥 in any objective function) and 

∃ 𝑖, 𝑓𝑖(𝑦) < 𝑓(𝑥) (𝑦 is better than 𝑥 in at least one objective function), where 𝑓𝑖 are the objective 

functions. 

For example, let our objective functions be 𝑓1(𝑎, 𝑏) = 𝑎
2 + 𝑏2 and 𝑓2(𝑎, 𝑏) = 𝑎 + 𝑏. Let 

Ω = [−1,1] × [−1,1]. 𝑓1 has a single global minimum at (0,0), so (0,0) is pareto optimal, as 

all other solutions output a larger value for 𝑓1. Using a similar argument, (−1, −1) is also pareto 

optimal, as it is the only global minimum of 𝑓2. A less trivial example are the points of the form 

(−𝑢, −𝑢), 𝑢 > 0. All points (𝑎, 𝑏) such that 𝑓1(𝑎, 𝑏) ≤ 𝑓1(−𝑢, −𝑢) are inside a circle with 

center in (0,0) and radius √2𝑢. But none of those points has 𝑓2(𝑎, 𝑏) < 𝑓1(−𝑢,−𝑢). So, all 

points (−𝑢,−𝑢) are pareto optimal. This can be better visualized in Figure 6. 
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Figure 6 Visualization of a Pareto optimal solution. 

 

One can also prove that no other solutions are pareto optimal. So, the pareto optimal 

solutions for this problem are the points of the form (−𝑢, −𝑢) for 0 ≤ 𝑢 ≤ 1. 

Finding a pareto optimal solution basically means there is no other solution the optimizer 

can guarantee is better than that one just by looking at the objective functions’ values. The user 

of the optimizer must choose the pareto optimal solution that best suits their needs. That said, 

a multi-objective optimizer should not just return a value 𝑥 ∈ Ω that is pareto optimal. Instead, 

it should return a list of all the values it found that are pareto optimal. Now that we know what 

are pareto optimal solutions and what their optimizers should return, we must see how the multi-

objective algorithms we chose in Table 1 work. 

 

3.2.1 MOPSO 

 

Multi-Objective Particle Swarm Optimization (MOPSO) is an extension of the standard 

Particle Swarm Optimization (PSO) tailored for dealing with multi-objective problems. It was 

introduced by Carlos Coello in 2002 [37]. Both versions use a fitness value to update the 

particles’ velocity. In the standard version, the particles’ fitness value is determined solely by 

the objective function evaluation. In the multi-objective version, the particles are sorted 

according to their pareto dominance. The particles that are not pareto dominated by any other 

belong to the first front. Then, of the remaining particles, the ones that are not pareto dominated 

by any others belong to the second front, and so on. This way we sorted the particles by their 

pareto dominance. Finally, the fitness value of a particle is the front it belongs to.  A list is 

maintained to keep all the pareto optimal solutions found by the algorithm (instead of a single 



32 

 

 

best solution). All remaining steps of the algorithm are like the single objective version, so we 

won’t extend the description here. 

 The technique described above to turn a single objective optimization algorithm into a 

multi-objective optimization algorithm is called Non-dominated Sorting, because we sort the 

points giving priority to the ones that are not dominated by any other (as in pareto dominated). 

 The MOPSO implementation we used in this paper was provided by the Python library 

pygmo [35] version 2.19.5. 

 

3.2.2 NSGA-II 

 

NSGA-II is a genetic algorithm that uses Non-dominated Sorting (see section 3.2.1)  to 

evaluate the fitness of the points. It was introduced by Kalyanmoy Deb in 2002 [17]. The 

NSGA-II algorithm can be described by the following sequence of steps: 

1. Initialization: Begin with a randomly generated population of potential 

solutions. Each individual in the population represents a potential solution to the 

optimization problem. 

2. Non-dominated Sorting: Sort the population into different fronts based on the 

concept of Pareto dominance. 

3. Crowding Distance Assignment: For each front, calculate the crowding 

distance. This helps maintain diversity in the population by preserving a spread 

of solution. 

4. Selection: Create a mating pool by selecting solutions based on their rank and 

crowding distance, ensuring that the best solutions have a higher chance of being 

selected for mating. 

5. Crossover and Mutation: Apply crossover and mutation operators to the 

mating pool to create a child population. Crossover combines pairs of solutions 

to produce new offspring, while mutation introduces random changes to 

individuals. 

6. Combination: Combine the parent and child population. 

7. Selection: Sort the combined population and select the best 𝑁 solutions based 

on nondomination and crowding distance to form a new parent population. 𝑁 is 

the population size. 

8. Termination: Repeat steps 2 to 7 until a stopping criterion is met. 
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NSGA-II specifically improves upon its predecessor by introducing a fast non-

dominated sorting approach, an elitist strategy and a parameter-less diversity-preserving 

mechanism. 

The NSGA-II implementation we used in this paper was provided by the Python library 

pymoo [31] version 0.6.0. 

 

3.2.3 MOEA/D 

 

The MOEA/D is a multi-objective evolutionary algorithm based on decomposition. The 

main strategy of the algorithm is decomposing the multi-objective problem into solving 

numerous single-objective problems. The algorithm was introduced by Qingfu Zhang in 2007 

[16]. It can be described by the following sequence of steps: 

1. Initialization: 

a. Define 𝑇: the number of subproblems considered. 

b. Define 𝜆: a uniform spread of weight vectors. 

c. Define 𝑇′: the number of weight vectors in the neighborhood of each 

weight vector. 

d. Initialize 𝑧: the ideal point which is the best value found so far for each 

objective. 

e. Generate an initial population randomly. 

f. Compute the Euclidean distances between any two weight vectors and 

identify the closest weight vectors for each weight vector. 

2. Update: for each subproblem, perform the following steps: 

a. Reproduction: randomly select two indexes from the neighborhood and 

generate a new solution using genetic operators. 

b. Improvement: Apply a problem-specific repair/improvement heuristic 

to produce a better solution. 

c. Update of 𝑧: if the new solution leads to an improvement in any of the 

objectives, update the ideal point 𝑧. 

d. Update of neighborhood solutions: update the solutions of neighboring 

subproblems if the new solution is better. 

e. Update of the External Population (EP): Add the new solution to EP if 

it is non-dominated, and remove from EP all solutions that are 

dominated by the new solution. 
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3. Stopping Criteria: Repeat the update step until a stopping criterion is met. 

At each generation, MOEA/D maintains: 

• A population of points, each representing the current solution to a subproblem. 

• The ideal point 𝑧, representing the best value found so far for each objective. 

• An external population (EP) used to store non-dominated solutions found during 

the search. 

This process aims to find a diverse set of solutions that approximate the Pareto front for 

the multi-objective optimization problem. 

The MOEA/D implementation used in this paper was provided by the Python library 

pymoo [31] version 0.6.0. 

 

3.2.4 MHACO 

 

MHACO is a multi-objective algorithm built on top of ACO (Ant Colony Optimization). 

The algorithm was introduced by Giacomo Acciarini in 2020 [13]. The algorithm can be 

described by the following sequence of steps: 

1. Initialization: Randomly generate the initial population of size 𝑁𝑝. Generate a 

solution archive of size 𝐾 < 𝑁𝑝. 

2. Reproduction: If the generation number is higher than 1, create a merged list of 

𝑁𝑝 + 𝐾 individuals by combining the archive and newly generated offspring. 

3. Ranking using the hypervolume-comparison operator: Rank individuals of 

the merged list to determine which will be kept in the archive. The archive is 

updated only if at least one offspring outperforms the worst in the archive. 

4. Generation of new offspring: Use the evolutionary operator to generate new 

individuals from those in the archive based on their positions in the archive and 

associated pheromone values. 

5. Algorithm Iteration: The algorithm goes back to the reproduction step and 

repeats the process. At the first iteration, only the initial population is ranked, 

while in subsequent iterations, both the solution archive and the population are 

sorted. The user can tune the solution archive size (𝐾) and the parameters 𝑇, 𝑁𝐺, 

and 𝑞 to adjust the pheromone values and the optimization process. 
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6. Termination: The process continues until a stopping criterion is met, such as a 

certain number of function evaluations without updates to the archive or 

reaching a maximum number of generations. 

MHACO algorithm focuses on the hypervolume metric as a performance indicator, 

considering both the quality and diversity of the Pareto front. The algorithm's parameters, 

including the solution archive size and the user-defined parameters 𝑇, 𝑁𝐺, and 𝑞, are crucial in 

controlling the exploration and exploitation balance, as well as the convergence behavior of the 

algorithm. 

The MHACO implementation used in this paper was provided by the Python library 

pygmo [35] version 2.19.5. 
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4 Test problems 

 

 

We tested the chosen algorithms (see Table 1) on 3 similar problems, called Jupiter Easy, 

Jupiter Hard and Cassini 1. The first two problems were designed by the author of this paper. 

The last is a well-known problem in literature. 

 

4.1 Jupiter Easy 

 

4.1.1 Single-objective version 

 

Starting on Earth ground, minimize the Δ𝑣 a spacecraft must apply to enter an orbit 

around Jupiter with pericenter radius equal to 600,000 km and eccentricity equal to 0.98 (any 

orbit meeting these criteria is acceptable). The planets’ ephemerides are given. There are two 

parameters for this optimization: time of launch from Earth 𝑇0 in MJD2000 (Modified Julian 

Date 2000) and time of flight to Jupiter Δ𝑡 in days. See section 5 for a detailed explanation of 

how the Δ𝑣 is determined from those parameters. The problem’s constraints are: 

 

Table 2 Bounds for the parameters of problem Jupiter Easy. 

Lower Bound Variable Upper Bound 

9131.5 MJD2000 𝑇0 (Launch from Earth) 9495.5 MJD2000 

300 days Δ𝑡 (Earth – Jupiter trip) 3000 days 

 

 

4.1.2 Multi-objective version 

 

The multi-objective version adds 𝑇𝑓 = 𝑇0 + Δ𝑡 (that is, time of arrival) as a new 

objective for the mission stated in 4.1.1. That is, the algorithm must find the pareto optimal 

points for the function (Δ𝑣, 𝑇𝑓). Notice the second objective is time of arrival, not time of flight. 
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4.2 Jupiter Hard 

 

4.2.1 Single-objective version 

 

Starting on Earth ground and doing a fly-by through Mars, calculate the minimum Δ𝑣 a 

spacecraft must apply to enter an orbit around Jupiter with pericenter radius equal to 600,000 

km and eccentricity equal to 0.98 (any orbit meeting these criteria is acceptable). The planets’ 

ephemerides are given. There are three parameters for this optimization: time of launch from 

Earth 𝑇0 in MJD2000 (Modified Julian Date 2000), time of flight Earth – Mars Δ𝑡1 in days and 

time of flight Mars – Jupiter Δ𝑡2 in days. See section 5 for a detailed explanation of how the Δ𝑣 

is determined from those parameters. The problem’s constraints are: 

 

Table 3 Bounds for the parameters of problem Jupiter Hard. 

Lower Bound Variable Upper Bound 

9131.5 MJD2000 𝑇0 (Launch from Earth) 10958 MJD2000 

50 days Δ𝑡1 (Earth – Mars trip) 1000 days 

300 days Δ𝑡2 (Mars – Jupiter trip) 3000 days 

 

 

4.2.2 Multi-objective version 

 

The multi-objective version adds 𝑇𝑓 = 𝑇0 + Δ𝑡1 + Δ𝑡2 (that is, time of arrival) as a new 

objective for the mission stated in 4.2.1. That is, the algorithm must find the pareto optimal 

points for the function (Δ𝑣, 𝑇𝑓). Notice the second objective is time of arrival, not time of flight. 

 

4.3 Cassini 1 

 

4.3.1 Single-objective version 

 

Starting on Earth ground and doing fly-bys through Venus, Venus, Earth and Jupiter in 

that order, calculate the minimum Δ𝑣 a spacecraft must apply to enter an orbit around Saturn 

with pericenter radius equal to 108,950 km and eccentricity equal to 0.98 (any orbit meeting 

these criteria is acceptable). The planets’ ephemerides are given. There are six parameters for 
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this optimization: time of launch from Earth 𝑇0 in MJD2000 (Modified Julian Date 2000), time 

of flight Earth – Venus Δ𝑡1 in days, time of flight Venus – Venus Δ𝑡2 in days, time of flight 

Venus – Earth Δ𝑡3 in days, time of flight Earth – Jupiter Δ𝑡4 in days and time of flight Jupiter 

– Saturn Δ𝑡5 in days. See section 5 for a detailed explanation of how the Δ𝑣 is determined from 

those parameters. The problem’s constraints are: 

 

Table 4 Bounds for the parameters of problem Cassini 1. 

Lower Bound Variable Upper Bound 

-1000 MJD2000 𝑇0 (Launch from Earth) 0 MJD2000 

30 days Δ𝑡1 (Earth – Venus trip) 400 days 

100 days Δ𝑡2 (Venus – Venus trip) 470 days 

30 days Δ𝑡3 (Venus – Earth trip) 400 days 

400 days Δ𝑡4 (Earth – Jupiter trip) 2000 days 

1000 days Δ𝑡5 (Jupiter – Saturn trip) 6000 days 

 

 

This problem is also available at [38]. 

 

4.3.2 Multi-objective version 

 

The multi-objective version adds 𝑇𝑓 = 𝑇0 +∑ Δ𝑡𝑖
5
𝑖=1  (that is, time of arrival) as a new 

objective for the mission stated in 4.3.1. That is, the algorithm must find the pareto optimal 

points for the function (Δ𝑣, 𝑇𝑓). Notice the second objective is time of arrival, not time of flight. 
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5 Methodology 

 

 

We used ESA (European Space Agency) Advanced Concepts Team's Space Mechanics 

Toolbox software to calculate the Δ𝑣 of a mission. The code we used is available at GitHub on 

https://github.com/fbrunodr/TestOptimizersOnSpaceTrajectoryProblems. This software takes 

as input the time of departure from earth 𝑇0 in MJD2000 (Modified Julian Date 2000) and the 

time each trip Δ𝑡𝑖 takes and outputs the Δ𝑣 required for this mission. To calculate the Δ𝑣 given 

this input the software uses Lambert transfers. Lambert transfers come from the study of 

Lambert’s problem: given two points in space, a central attractor body and a time Δ𝑡, there 

exists a single orbit that passes through those points in Δ𝑡. We call this orbit Lambert transfer. 

We know the positions of the planets in the solar system through time given the planets’ 

ephemerides. That said, given a departure time from a planet and the arrival time at another 

planet, we know what orbit the spacecraft should follow considering the Sun as the central 

attractor body and ignoring planets’ gravitational influence. This is a valid approximation, as 

planets will be too distant from the spacecraft during almost all the transition to have a 

considerable influence on the motion of the spacecraft. Only when the spacecraft reaches a 

planet do we consider its influence. So, given the time of arrival at each planet we know what 

trajectory the spacecraft must follow. For example, if we set the spacecraft to departure Earth 

on 18th November 2023, reach Mars on 18th November 2024 and finally Jupiter on 18th 

November 2026 we will have a trajectory that looks like the following image: 

https://github.com/fbrunodr/TestOptimizersOnSpaceTrajectoryProblems
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Figure 7 Lambert transfers from Earth to Mars then Jupiter given arrival times. 

 

Now that we know what trajectory the spacecraft must follow between planets, we must 

know what trajectory it follows in the planet’s sphere of influence and more importantly what 

Δ𝑣 the spacecraft must output to follow the defined trajectory. For that, the ESA’s software 

considers three cases: departure, fly-by and arrival. Let’s see each one separately. 

 

5.1 Departure 

 

As said in the problems’ statement, the spacecraft is launched from Earth. We have the 

first lambert transfer and thus the velocity the spacecraft should have at departure time. We also 

know what velocity Earth has at departure time. So, we can estimate the Earth launch Δ𝑣 by 

calculating the difference between the required spacecraft velocity and Earth’s velocity and 

taking the norm of this value.  
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5.2 Fly-by 

 

We know the orbits the spacecraft should follow before and after passing by a planet. We 

also know the planet’s velocity. So, we know the spacecraft’s velocity relative to the planet 

during approach and departure. Let’s call those velocities 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡. We may assume that 

𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 are coplanar, as the planets in the solar system and the Sun are approximately in 

the same plane. The spacecraft does a hyperbolic trajectory through the planet at arrival (as the 

spacecraft is coming from outside the planet’s sphere of influence) and at departure. Let’s apply 

an impulse at the pericenter of the incoming hyperbola tangent to the spacecraft’s velocity. We 

can determine the speed the spacecraft has at the pericenter of the incoming hyperbola using 

energy conservation: 

𝜀 =
𝑣𝑖𝑛
2

2
=
𝑣𝑝𝑖𝑛
2

2
−
𝜇

𝑟𝑝
 

Where 𝜀 is the spacecraft’s specific energy, 𝑣𝑖𝑛 is the incoming velocity from outside the 

planet’s sphere of influence, 𝑣𝑝𝑖𝑛 is the velocity the spacecraft has at the pericenter of the planet, 

𝑟𝑝 is the pericenter of the hyperbolic trajectory and 𝜇 is the standard gravitational parameter of 

the primary body. Rearranging terms we get: 

‖𝑣𝑝𝑖𝑛‖ = √𝑣𝑖𝑛
2 +

2𝜇

𝑟𝑝
 

As previously mentioned, we apply an impulse at the pericenter of the spacecraft’s 

trajectory tangent to the spacecraft’s velocity. So, the outcoming hyperbola also has a pericenter 

𝑟𝑝. Applying conservation of energy, the speed the spacecraft must have at the pericenter so it 

departures from the planet with velocity (relative to the planet) 𝑣𝑜𝑢𝑡 is: 

‖𝑣𝑝𝑜𝑢𝑡‖ = √𝑣𝑜𝑢𝑡
2 +

2𝜇

𝑟𝑝
 

So, we can determine the Δ𝑣 we must apply during the fly-by using the following formula: 

Δ𝑣 = ‖‖𝑣𝑝𝑜𝑢𝑡‖ − ‖𝑣𝑝𝑖𝑛‖‖ = ‖√𝑣𝑜𝑢𝑡
2 +

2𝜇

𝑟𝑝
− √𝑣𝑖𝑛

2 +
2𝜇

𝑟𝑝
‖  

We do not want the spacecraft to simply exit the planet’s sphere of influence with speed 

‖𝑣𝑜𝑢𝑡‖. We want it to exit with velocity (mind the direction) 𝑣𝑜𝑢𝑡. This implies we must choose 

the pericenter 𝑟𝑝 carefully so the outcoming velocity matches the expected direction. Let 𝛼 be 
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the deflection angle after passing by the planet. We can calculate 𝛼 using the dot product of 𝑣𝑖𝑛 

and 𝑣𝑜𝑢𝑡: 

𝛼 = acos((𝑣𝑖𝑛 ⋅ 𝑣𝑜𝑢𝑡)/(‖𝑣𝑖𝑛‖ ‖𝑣𝑜𝑢𝑡‖)) 

We have two hyperbolas to analyze, each one with its deflection angle 𝛿 (see Figure 8 for 

better visualization). 

 

 

Figure 8 Diagram of a hyperbolic trajectory. Image taken from [39]. 

 

Let’s call 𝛿𝑖𝑛 the deflection angle on the incoming hyperbola and 𝛿𝑜𝑢𝑡 the deflection angle 

of the outcoming hyperbola. We must have: 

𝛼 =
𝛿𝑖𝑛
2
+
𝛿𝑜𝑢𝑡
2

 

We can determine 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 using only the incoming / outcoming velocities and the 

pericenter distance: 

𝛿 = 2 sin−1(
1

1 +
𝑟𝑝𝑣∞

2

𝜇

) ⇒ 

𝛼 =
𝛿𝑖𝑛
2
+
𝛿𝑜𝑢𝑡
2
= sin−1

(

 
1

1 +
𝑟𝑝𝑣𝑖𝑛

2

𝜇 )

 + sin−1

(

 
1

1 +
𝑟𝑝𝑣𝑜𝑢𝑡

2

𝜇 )

  

 

ESA’s software uses the Newton-Raphson method to find the value of 𝑟𝑝 that satisfies this 

last equation (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝜇 and 𝛼 are known). Finally, known the value of 𝑟𝑝 we know all the 
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variables needed to determine Δ𝑣. In short, we approach the planet in such a way that we can 

apply a tangent impulse at the pericenter of the incoming hyperbola so the outcoming hyperbola 

has velocity (magnitude and direction) 𝑣𝑜𝑢𝑡. 

 

5.3 Arrival 

 

On arrival the spacecraft will approach the final planet in a hyperbola (the spacecraft is 

coming from outside the planet’s sphere of influence) with pericenter distance equal to the 

pericenter distance defined in the final orbit. Finally, the spacecraft will apply an impulsive 

force tangent to the spacecraft’s velocity (to preserve the pericenter distance) so the final 

trajectory will match the orbit defined in the problem. The speed at the pericenter of the 

incoming hyperbola is 

‖𝑣1‖ = √𝑣𝑖𝑛
2 +

2𝜇

𝑟𝑝
 

Where 𝑣𝑖𝑛 is the spacecraft’s velocity relative to the planet (which can be determined by 

the previous lambert’s orbit and the planet’s velocity), 𝜇 is the standard gravitational parameter 

of the planet and 𝑟𝑝 is the pericenter distance defined in the problem statement. The speed the 

spacecraft has at the pericenter of the final orbit is found by the following formula [40]: 

‖𝑣2‖ = √
2𝜇

𝑟𝑝
−
𝜇 ∗ (1 − 𝑒)

𝑟𝑝
 

Where 𝑒 is the eccentricity of the final orbit. So, the Δ𝑣 the spacecraft must apply to enter 

the final orbit is determined by: 

Δ𝑣 = ‖𝑣1‖ − ‖𝑣2‖ = √𝑣𝑖𝑛
2 +

2𝜇

𝑟𝑝
−√

2𝜇

𝑟𝑝
−
𝜇 ∗ (1 − 𝑒)

𝑟𝑝
 

This Δ𝑣 is then added to the final answer. 

 

5.4 Observations 

 

The software described in this section also applies penalties if the pericenter radius of each 

fly-by is too close to the planet, to avoid the spacecraft entering the planet’s atmosphere or 

colliding with it. If you want to inspect the software further, visit the GitHub repository.  

https://github.com/fbrunodr/TestOptimizersOnSpaceTrajectoryProblems
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6 Results 

 

 

As shown in Table 1, the chosen optimizers can be classified between single-objective 

optimizers and multi-objective optimizers. We will compare them separately to provide a fair 

comparison. 

 

6.1 Single-objective optimizers 

 

 

To assess the chosen single objective optimizers, we compared the number of evaluations 

(that is, how many times the objective function was called during optimization) and the quality 

of the results of the optimizers (lower values of Δ𝑣 imply better results). After collecting all the 

data we will display in Chapter 6, we discovered that the best solution (that is, the one that 

minimizes Δ𝑣) for the problem Jupiter Easy outputs a Δ𝑣 of 12.97 𝑘𝑚/𝑠. For the problem 

Jupiter Hard, the best solution outputs 9.42 𝑘𝑚/𝑠. For the problem Cassini 1 the best solution 

outputs 4.93 𝑘𝑚/𝑠, as seen in [38]. That is why the best Δ𝑣 graphs start at those values. Each 

algorithm was run 100 times in each test problem (to mitigate the effects of variability and 

ensure statistical robustness in the analysis). The best solutions can be visualized below: 
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Figure 9 Best solution found for Jupiter Easy. 

 

 

Figure 10 Best solution found for Jupiter Hard. 
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Figure 11 Best solution for Cassini 1 according to [38]. 

 

 

Figure 12 Best solution for Cassini 1, only first three trips. 

 

A careful reader will notice that the solutions are not Hohmann transfers. In particular, the 

solution for Jupiter 1 is not a Hohmann transfer, although one expects it to be the best solution 
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for this problem. Indeed, the best possible solution for this problem would be a Hohmann 

transfer, but the constraints do not allow that to happen. To perform a Hohmann transfer 

between those two orbits one would need to exit Earth at time 𝑇0 and reach Jupiter at time 𝑇0 +

Δ𝑡 such that they are perfectly aligned with the Sun in the middle. Because Earth’s and Jupiter’s 

orbits are defined, the Hohmann transfer orbit is also well defined. The time it takes for the 

spacecraft to do a revolution around the Sun is given by Kepler’s third law: 

𝑎3

𝑇2
=
𝜇𝑠𝑢𝑛
4𝜋2

 

Where 𝑎 is the semi-major axis of the orbit, 𝑇 is the period of the orbit and 𝜇𝑠𝑢𝑛 is the Sun 

standard gravitational parameter. This means that Δ𝑡 is constrained by Earth’s and Jupiter’s 

orbits themselves. So, if we wish to perform a Hohmann transfer between Earth and Jupiter, the 

only parameter we have is 𝑇0. It happens that setting the departure time (from Earth) in the first 

problem to the year 2025 makes it impossible to find 𝑇0 that allows for a Hohmann transfer. If 

we set a broader range of time for 𝑇0, we can find the expected solution:  

 

 

Figure 13 Hohmann transfer from Earth to Jupiter. 

 

Notice the travel time in Figure 13 is 998.17 days. The semi-major axis of Jupiter is 

7.78479× 108 𝑘𝑚 and the semi-major axis of Earth is 1.49598 × 108 𝑘𝑚 [41]. Hence, the 

semi-major axis of the Hohmann transfer is 𝑎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = (𝑎𝑗𝑢𝑝 + 𝑎𝑒𝑎𝑟𝑡ℎ)/2 = 4.6409×

108 𝑘𝑚. Also, Sun’s gravitational parameter is 1.32712 × 1011𝑘𝑚3/𝑠2 [42]. So, the period 
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for the Hohmann’s orbit is 𝑇 = 2𝜋√
𝑎3

𝜇𝑠𝑢𝑛
= 1995.46 days. This implies that half a revolution 

takes 997.72 days, which is a 0.04% difference from the solution found in Figure 13. While 

the Jupiter Easy solution outputs 12.97 𝑘𝑚/𝑠 of Δ𝑣, the solution provided in Figure 13 outputs 

12.57 𝑘𝑚/𝑠. 

 

 

6.1.1 Grid Search 

 

As said in section 3.1.1, we recommend using grid search when the input dimension is 

small. Not only it is fast enough for the optimization process, but it also allows visualizing the 

cost of each input. The problem Jupiter Easy has a 2-dimensional input (time of departure and 

time of flight between Earth and Jupiter), so we can plot a heat map of the solution: 

 

 

Figure 14 Δ𝑣 of each input of the problem Jupiter 1. 

 

 The star on Figure 14 marks the point of minimum Δ𝑣 found by the grid search, with 

Δ𝑣 = 12.966 km/s. 
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6.1.2 PSO 

 

We optimized each test problem using the PSO algorithm 100 times. The PSO 

implementation used in this paper was provided by the Python library pymoo [31] version 0.6.0. 

The PSO algorithm requires values of inertia, cognitive impact, social impact, initial velocity 

and maximum velocity to work. We used the default values provided by the library during the 

optimization process: inertia = 0.9, cognitive impact = 2.0, social impact = 2.0 and maximum 

velocity rate = 0.2. The maximum velocity rate is normalized over the lower and upper bounds 

of the problem. The initial population is sampled using Latin Hypercube Sampling over the 

lower and upper bounds of the problem. Below are bar graphs for the number of evaluations 

(that is, how many times the objective function is called during the optimization) and best Δ𝑣 

found per run (run meaning we executed the optimization algorithm).  

 

 

Figure 15 PSO performance on Jupiter Easy. 

 

 Figure 15 shows that on all the 100 times we run the optimizer PSO on problem Jupiter 

Easy it needed between 1000 and 2000 evaluations of the objective function to finish the 

optimization process. It also obtained the best solution (the one with Δ𝑣 = 12.9 𝑘𝑚/𝑠) 99 times 

and only a single time it finished with a suboptimal solution with Δ𝑣 = 13.9 𝑘𝑚/𝑠. 
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Figure 16 PSO performance on Jupiter Hard. 

 

 We can notice from Figure 16 that the performance of the algorithm PSO on problem 

Jupiter Hard was much worse than in the previous problem. In more than 40 % of the times we 

run the algorithm it obtained a solution with Δ𝑣 at least 19.9 𝑘𝑚/𝑠, while the best solution with 

Δ𝑣 = 9.4 𝑘𝑚/𝑠 was found only in 7 % of the runs. 

 

 

 

Figure 17 PSO performance on Cassini 1. 

 

 From Figure 17 we can notice that in more than 50 % of the times we run PSO it 

outputted a solution between 12.5 𝑘𝑚/𝑠 and 20.0 𝑘𝑚/𝑠, which is far from the optimal solution 

4.9 𝑘𝑚/𝑠. The table below compiles the performance of the algorithm PSO on all three 

problems: 
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Table 5 Average performance of PSO on test problems. 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 1324.25 12.976 0.006 

Jupiter Hard 4759.75 17.301 7.881 

Cassini 1 7539.00 15.109 10.179 

 

 

6.1.3 DE 

 

We optimized each test problem using the DE algorithm 100 times. The DE 

implementation used in this paper was provided by the Python library pymoo [31] version 0.6.0. 

The DE implementation on pymoo requires the population size as a parameter. We used the 

default value of population size = 100. The initial population is sampled using random uniform 

distribution from the problem bounds. Below are bar graphs for the number of evaluations (that 

is, how many times the objective function is called during the optimization) and best Δ𝑣 found 

per run (run meaning we executed the optimization algorithm). 

 

 

Figure 18 DE performance on Jupiter Easy. 

 

 Figure 18 shows that on all the 100 times we run the optimizer DE on problem Jupiter 

Easy we found the optimal solution with Δ𝑣 = 12.9 𝑘𝑚/𝑠. Notice though we needed more 

evaluations of the objective function than PSO. 
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Figure 19 DE performance on Jupiter Hard. 

 

 Figure 19 shows that the performance of DE on Jupiter Hard was much better than that 

of PSO, as the algorithm was able to get close to the optimal Δ𝑣 30 % of the time. Also, the 

algorithm never returned a value of Δ𝑣 ≥ 19.9 𝑘𝑚/𝑠, unlike PSO that returned a value in this 

range in more than 40 % of runs. 

 

 

 

Figure 20 DE performance on Cassini 1. 

 

 Figure 20 shows that DE beats PSO in the problem Cassini 1 when it comes to finding 

the best Δ𝑣 for the problem, although DE needs more evaluations of the objective function to 

converge. 
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Table 6 Average performance of DE on test problems. 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 6675.00 12.967 0.000 

Jupiter Hard 9808.00 11.532 2.112 

Cassini 1 15489.00 10.105 5.175 

 

 

6.1.4 GA 

 

We optimized each test problem using the GA algorithm 100 times. The GA 

implementation used in this paper was provided by the Python library pymoo [31] version 0.6.0. 

The GA implementation on pymoo requires the population size as a parameter. We used the 

default value of population size = 100. The initial population is sampled using random uniform 

distribution from the problem bounds. Below are bar graphs for the number of evaluations (that 

is, how many times the objective function is called during the optimization) and best Δ𝑣 found 

per run (run meaning we executed the optimization algorithm). 

 

 

Figure 21 Performance of GA on Jupiter Easy. 

 

 The results presented on Figure 21 are similar to that of Figure 18 (DE algorithm on 

Jupiter Easy). 
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Figure 22 Performance of GA on Jupiter Hard. 

 

 Again, GA obtained results similar to that of DE, although GA seems to be converged 

to the best answer more often with more evaluations of the objective function. 

 

 

 

 

Figure 23 Performance of GA on Cassini 1. 

 

Comparing Figure 23 and Figure 20, DE has converged to the minimum of Cassini 1 

more often than GA, even though GA needed more function evaluations. We can see that 

behavior in the table below: 
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Table 7 Average performance of GA on test problems 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 5354.00 12.967 0.000 

Jupiter Hard 12900.00 11.175 1.755 

Cassini 1 18289.00 11.591 6.661 

 

Comparing Table 6 and Table 7 we can see DE performed better on Cassini 1 compared 

to GA, as it required less evaluations to get a better solution on average. On problem Jupiter 

Hard DE did less function evaluations and performed a bit worse. We concluded that DE 

performed better than GA on our test problems. 

 

6.1.5 SA 

 

We optimized each test problem using the SA algorithm 100 times. The SA 

implementation used in this paper was provided by the Python library pygmo [35] version 

2.19.5. The SA implementation on pygmo accepts as parameters 𝑇𝑠, the starting temperature, 

𝑇𝑓, the final temperature, 𝑛𝑇𝑎𝑑𝑗, number of temperature adjustments in the annealing schedule, 

𝑛𝑟𝑎𝑛𝑔𝑒𝑎𝑑𝑗, the number of adjustments of the search range performed at a constant temperature, 

𝑏𝑖𝑛𝑠𝑖𝑧𝑒  the number of mutations that are used to compute the acceptance rate and 𝑠𝑡𝑎𝑟𝑡_𝑟𝑎𝑛𝑔𝑒, 

the starting range for mutating the decision vector. We used all the default values provided by 

the library: 𝑇𝑠 = 10, 𝑇𝑓 = 1, 𝑛𝑇𝑎𝑑𝑗 = 10, 𝑛𝑟𝑎𝑛𝑔𝑒𝑎𝑑𝑗 = 10, 𝑏𝑖𝑛𝑠𝑖𝑧𝑒 = 10 and 𝑠𝑡𝑎𝑟𝑡𝑟𝑎𝑛𝑔𝑒 = 1. 

Below are bar graphs for the number of evaluations (that is, how many times the objective 

function is called during the optimization) and best Δ𝑣 found per run (run meaning we executed 

the optimization algorithm). 
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Figure 24 Performance of SA on Jupiter Easy. 

 

 Figure 24 shows that on all the 100 times we run the optimizer SA on problem Jupiter 

Easy it needed less than 1000 evaluations of the objective function to finish the optimization 

process. It also obtained the best solution (the one with Δ𝑣 = 12.9 𝑘𝑚/𝑠) in 98 % of the runs. 

 

 

 

Figure 25 Performance of SA on Jupiter Hard. 

 

 Comparing Figure 16 and Figure 25, we can see SA performed better than PSO in the 

problem Jupiter Hard, although it needed less evaluations of the objective function to converge. 
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Figure 26 Performance of SA on Cassini 1. 

 

 According to Figure 26 SA performed poorly on problem Cassini 1, but it also needed 

much less evaluations of the objective function than the previously analyzed algorithms to 

converge: it needed between 1000 and 2000 evaluations in all the runs. The table below 

summarizes the performance of SA: 

 

Table 8 Average performance of SA on test problems. 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 528.00 12.991 0.021 

Jupiter Hard 728.00 16.255 6.835 

Cassini 1 1328.00 16.998 12.068 

 

 Comparing Table 5 and Table 8 we see that SA and PSO had comparable performance, 

although SA needed much less evaluations of the objective function to converge. 

 

6.1.6 ABC 

 

We optimized each test problem using the ABC algorithm 100 times. The ABC 

implementation used in this paper was provided by the Python library pygmo [35] version 

2.19.5. The ABC implementation on pygmo accepts as parameters the population size and the 

number of generations. We set the population size to 128 and the number of generations to 64. 

Because we fixed the number of generations, the number of evaluations of the objective 
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function will be fixed. We chose a number of generations that lead to a number of evaluations 

comparable to the algorithms GA and DE on the problems Jupiter Hard and Cassini 1, so we 

can compare the algorithms more fairly. Below are bar graphs for the number of evaluations 

(that is, how many times the objective function is called during the optimization) and best Δ𝑣 

found per run (run meaning we executed the optimization algorithm).  

 

 

Figure 27 Performance of ABC on Jupiter Easy. 

 

 As expected, the algorithm ABC always finds the optimal Δ𝑣 on problem Jupiter Easy. 

 

 

 

Figure 28 Performance of ABC on Jupiter Hard. 
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 According to Figure 28, ABC performs better than GA and DE on the problem Jupiter 

Hard, as it never found a value far from the optimal Δ𝑣. But it needed about 16000 evaluations 

on all runs to achieve this performance. 

 

 

 

Figure 29 Performance of ABC on Cassini 1. 

 

 According to Figure 29, ABC performs worse than GA and DE on the problem Cassini 

1, as in 89 % of runs it got a value of Δ𝑣 of at least 10 𝑘𝑚/𝑠. We should also remember that 

ABC did a fixed amount of evaluation of the objective function. The table below summarizes 

the performance of the algorithm ABC: 

 

Table 9 Average performance of ABC on test problems. 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 16512 12.967 0.000 

Jupiter Hard 16512 10.337 0.917 

Cassini 1 16512 12.718 7.788 

 

 Comparing Table 6 and Table 9, in particular for the Cassini 1 problem, where the 

number of evaluations are comparable, we can see that DE performed better than ABC even 

with less evaluations on average. 
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6.1.7 NSGA-II single-objetive 

 

We optimized each test problem using the NSGA-II algorithm 100 times. The NSGA-

II implementation used in this paper was provided by the Python library pymoo [31] version 

0.6.0. The NSGA-II implementation on pymoo requires the population size as a parameter. We 

used the default value of population size = 100. The initial population is sampled using random 

uniform distribution from the problem bounds. Below are bar graphs for the number of 

evaluations (that is, how many times the objective function is called during the optimization) 

and best Δ𝑣 found per run (run meaning we executed the optimization algorithm). 

 

 

Figure 30 NSGA-II performance on Jupiter Easy single-objective. 

 

 The results shown on Figure 30 are similar to that of Figure 21 (GA), as expected. 

 

 

 

Figure 31 NSGA-II performance on Jupiter Hard single-objective. 
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 Again, we found similar results between GA and NSGA-II comparing Figure 22 and 

Figure 31. 

 

 

 

Figure 32 NSGA-II performance on Cassini 1 single-objective. 

 

 NSGA-II performance in problem Cassini 1 was really similar to that of GA and DE, 

making it hard to draw conclusions just by looking at the graphics. We need the average 

performance of each to provide a fair comparison: 

 

Table 10 Average performance of NSGA-II on test problems. 

 
Average number 

of Evaluations 
Average Δ𝑣 found in 𝑘𝑚/𝑠 Δ𝑣𝑎𝑣𝑔 − Δ𝑣𝑏𝑒𝑠𝑡 in 𝑘𝑚/𝑠 

Jupiter Easy 5977.00 12.967 0.000 

Jupiter Hard 10791.00 11.066 1.646 

Cassini 1 15350.00 11.773 6.843 

 

 

 NSGA-II performed better than DE on Jupiter Hard, but worse on Cassini 1, having a 

comparable number of evaluations on each. Because Cassini 1 is the harder problem and 

NSGA-II performed significantly worse than DE, we chose DE as the preferred algorithm 

between the two. NSGA-II had really similar results to GA and it needed less function 

evaluations, so we set NSGA-II as the preferred algorithm over GA, although both have really 

close performance. 
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6.2 Multi-objective optimizers 

 

To assess the chosen multi-objective optimizers, we compared the number of evaluations 

(that is, how many times we called the objective function) and the quality of the results of the 

optimizers. To compare the quality of the results we analyzed two graphics: one that shows the 

obtained pareto fronts (that is, the pareto optimal outputs) merged after 100 runs and another 

one that shows the best Δ𝑣 of each run (just like in the previous sections). At least one of the 

pareto optimal solutions minimizes the problem Δ𝑣, so a good multi-objective minimizer must 

also find a good solution for the single-objective case, that is why we also provided a graph of 

the best Δ𝑣 of each run. The best known solution shown in each pareto front graph was obtained 

after running. 

 

6.2.1 MOPSO 

 

We optimized each test problem using the MOPSO algorithm 100 times. The MOPSO 

implementation used in this paper was provided by the Python library pygmo [35] version 

2.19.5. The MOPSO implementation on pygmo accepts as parameters the population size, the 

number of generations, Ω (inertia weight), 𝑐1 (magnitude of the force, applied to the particle’s 

velocity, in the direction of its previous best position), 𝑐2 (magnitude of the force, applied to 

the particle’s velocity, in the direction of its global best position), 𝜒 (scaling factor), 𝑣𝑐𝑜𝑒𝑓 

(velocity coefficient), leader selection range and diversity mechanism. We set the population 

size to 128 and the number of generations to 128. The remaining parameters were left as default, 

so we have Ω = 0.6, 𝑐1 = 0.01, 𝑐2 = 0.5, 𝜒 = 0.5, 𝑣𝑐𝑜𝑒𝑓 = 0.5, leader selection range = 2 and 

diversity mechanism = ‘crowding distance’. Because we fixed the number of generations, the 

number of evaluations of the objective function will be fixed. We chose a number of generations 

that lead to a number of evaluations comparable to the algorithm NSGA-II on the problems 

Jupiter Hard and Cassini 1, so we can compare the algorithms more fairly. Below are bar graphs 

for the number of evaluations (that is, how many times the objective function is called during 

the optimization), best Δ𝑣 found per run (run meaning we executed the optimization algorithm) 

and a scatter graph of the pareto front found by the algorithm.  

 



63 

 

 

 

Figure 33 Performance of MOPSO on Jupiter Easy. 

 

 According to Figure 33 the optimizer MOPSO was able to find the pareto front in some 

runs. It had difficulty in finding the values that minimize the problem’s Δ𝑣 in some runs. 
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Figure 34 Performance of MOPSO on Jupiter Hard. 

 

 According to Figure 34 the optimizer MOPSO was unable to find the pareto front of the 

problem, especially in points close to the minimum Δ𝑣. 
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Figure 35 Performance of MOPSO on Cassini 1. 

 

 According to Figure 35 the optimizer MOPSO performed very poorly in the problem 

Cassini 1, even though it had 16512 evaluations of the objective function in each run (that is, 

each time we executed the optimization process). 
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6.2.2 NSGA-II 

 

We optimized each test problem using the NSGA-II algorithm 100 times. The NSGA-

II implementation used in this paper was provided by the Python library pymoo [31] version 

0.6.0. The NSGA-II implementation on pymoo requires the population size as a parameter. We 

used the default value of population size = 100. The initial population is sampled using random 

uniform distribution from the problem bounds. Below are bar graphs for the number of 

evaluations (that is, how many times the objective function is called during the optimization), 

best Δ𝑣 found per run (run meaning we executed the optimization algorithm) and a scatter graph 

of the pareto front found by the algorithm. 
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Figure 36 Performance of NSGA-II on Jupiter Easy multi-objective. 

 

 According to Figure 36 the optimizer NSGA-II was able to successfully find the pareto 

front in all runs, even needing less evaluations of the objective function when compared to 

MOPSO, as can be seen in Figure 33. 
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Figure 37 Performance of NSGA-II on Jupiter Hard multi-objective. 

 

 On average, we can see the algorithm NSGA-II was able to find the pareto front of the 

problem Jupiter Hard, unlike the previous analyzed algorithm MOPSO. 

 

  

 
 



69 

 

 

 

Figure 38 Performance of NSGA-II on Cassini 1 multi-objective. 

 

 NSGA-II was able to fit well to the pareto front of the problem Cassini 1, although it 

had difficulty in finding the minimum Δ𝑣 for the problem. 
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6.2.3 MOEA/D 

 

We optimized each test problem using the MOEA/D algorithm 100 times. The MOEA/D 

implementation used in this paper was provided by the Python library pymoo [31] version 0.6.0. 

The MOEA/D implementation on pymoo requires reference directions, number of neighbors 

and probability of mating to instantiate the algorithm. We used 24 reference directions 

uniformly distributed in a 2D circle, 15 neighbors and probability of mating = 0.7. Below are 

bar graphs for the number of evaluations (that is, how many times the objective function is 

called during the optimization), best Δ𝑣 found per run (run meaning we executed the 

optimization algorithm) and a scatter graph of the pareto front found by the algorithm. 
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Figure 39 Performance of MOEA/D on Jupiter Easy. 

 

 According to Figure 39, MOEA/D found an incomplete pareto front during runs. Notice 

it also needed less evaluations than the previous algorithms to converge. 
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Figure 40 Performance of MOEA/D on Jupiter Hard. 

 

 According to Figure 40, MOEA/D had trouble finding the points of the pareto front that 

minimize the mission Δ𝑣. It converged earlier than the previously analyzed algorithms. 
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Figure 41 Performance of MOEA/D on Cassini 1. 

 

 Again, MOEA/D had trouble finding the points of the pareto front that minimize the 

mission Δ𝑣. It should be noted that MOEA/D took less evaluations to converge than the 

previous two algorithms on all problems and had results comparable to MOPSO. 
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6.2.4 MHACO 

 

We optimized each test problem using the MHACO algorithm 100 times. The MHACO 

implementation used in this paper was provided by the Python library pygmo [35] version 

2.19.5. The MHACO implementation on pygmo accepts as parameters the population size, the 

number of generations, the kernel size, the convergence seed parameter, the threshold 

paremeter, the standard convergence speed parameter, evaluation stop criteria and focus 

parameter. We set the population size to 128 and the number of generations to 128. The 

remaining parameters were left as default, so we have kernel size = 63, convergence speed 

parameter = 1.0, threshold parameter = 1, standard convergence speed parameter = 7, evaluation 

stopping criterion = 10’000 and focus parameter = 0. Because we fixed the number of 

generations, the number of evaluations of the objective function will be fixed. We chose a 

number of generations that lead to a number of evaluations comparable to the algorithm NSGA-

II on the problems Jupiter Hard and Cassini 1, so we can compare the algorithms more fairly. 

Below are bar graphs for the number of evaluations (that is, how many times the objective 

function is called during the optimization), best Δ𝑣 found per run (run meaning we executed 

the optimization algorithm) and a scatter graph of the pareto front found by the algorithm.  
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Figure 42 Performance of MHACO on Jupiter Easy. 

 

 Comparing Figure 42 and Figure 36, we see the MHACO algorithm performed almost 

as well as NSGA-II. 
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Figure 43 Performance of MHACO on Jupiter Hard. 

 

 Comparing Figure 43 and Figure 37 we notice that NSGA-II had considerable better 

performance on problem Jupiter Hard. It should be noted that NSGA-II had more function 

evaluations on average. 
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Figure 44 Performance of MHACO on Cassini 1 

 

 Comparing Figure 44 and Figure 38 we notice that NSGA-II had considerable better 

performance on problem Cassini 1, especially for finding the points that minimize the mission 

Δ𝑣. It should be noted that NSGA-II had more function evaluations on average. That said, we 

conclude that NSGA-II is the best optimizer for multi-objective optimization and MHACO is a 

close second-place. MOEA/D needs much less evaluations to converge and its performance is 

worse than those two. Finally, MOPSO needed as much evaluations as MHACO to finish and 
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had bad performance. We encourage the reader to check the GitHub repository and run your 

own tests: https://github.com/fbrunodr/TestOptimizersOnSpaceTrajectoryProblems. 
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7 Conclusion 

 

 

As highlighted in section 6: 

 

• Single-objective algorithms: 

o DE has the best performance when it comes to the quality of solution 

(minimizing the objective function).  

o NSGA-II has a similar performance to DE, although it performed worse on 

the harder problem. 

o GA has a performance comparable to that of NSGA-II, although it is placed 

worse because it needed more function evaluations to converge on average. 

o SA needed much fewer evaluations to converge than the other algorithms, 

but it is also more susceptible to getting stuck on local minima. This is 

expected behavior. 

o The remaining single-objective algorithms are Pareto dominated by DE and 

SA regarding the number of evaluations and quality of solution, so we 

suggest that you do not use them if you have the option. 

• Multi-objective algorithms: 

o NSGA-II has the best performance when it comes to quality of solution. 

o MHACO is a close second place compared to NSGA-II. 

o MOEA/D needs significantly less evaluations than NSGA-II and MHACO 

to converge and it had worse performance finding the pareto front. 

o MOPSO performed poorly on the tests. We suggest that you do not use it. 

With that said, we recommend using either DE, NSGA-II or GA for single-objective 

optimization. If very few evaluations is a must SA can be a great alternative. For multi-objective 

optimization NSGA-II and MHACO are the suggested algorithms. For future work, we suggest: 

• Study how changing the algorithms’ parameters may influence their performance. 

• Test the optimizers presented in this paper on a more diverse set of test problems, 

particularly more complex problems. 

• Test more optimizers. 
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